The Rise of Gas to Power

29 September 2016
Meet the Team

Kieran Whyte
Partner, Johannesburg

Neil Donoghue
Partner, London

Mark Tibberts
Partner, New York

Mark Richardson
Senior Associate, London

Mona Dajani
Partner, Chicago

Norman Bissett
Partner, Jakarta
Agenda

- Global LNG Market Developments
- Why Gas to Power?
- Key Issues and Considerations
- Case studies – South Africa and Morocco
- Q&A
Global LNG Market Developments
Global LNG Market - Developments

- Historically LNG projects were very high capex developments based on fields in one location selling to an incumbent and monopoly utility.
 - Structures generally inflexible in terms of resource, risk allocation, quantities and delivery models.
 - Pricing based on seller’s production costs
- Key developments – gas on gas competition in Europe
 - Gas prices set by fundamentals of supply and demand – producers required to market prices (development of market based pricing model).
 - Development of aggregators using multiple supply sources to provide for flexibility in supply terms, rather than linked to single field / liquefaction facilities.
 - Led to large differentials between Atlantic Basin prices and Asian prices (where linked to oil prices e.g. JCC) not justified by delivery costs alone.
Global LNG Market - Developments

- Key developments – US shale gas:
 - Fall in hydrocarbon prices and oversupply of gas in the market, plus greater competition
 - Ability to acquire US gas on Henry Hub linked pricing bases at a fraction of historical JCC prices
 - Japanese utilities buying mixture of JCC linked and Henry Hub linked prices – break the assumption of an immutable link between LNG and oil prices
 - Global oil price slump has also seen JCC linked pricing dropping below Henry Hub linked prices
 - In addition, US surplus provides potential for greater quantity flexibility – US gas and shipping can be acquired at levels of LNG actually required
Market Conditions

Recent History: Projections

- Since 2000 (Deutsche Bank):
 - Global natural gas demand: increased by 2.7% p.a.
 - Global LNG demand: increased by 7.6% p.a.

- Future growth:
 - Global natural gas demand: to increase 1.6% p.a. to 2035 (twice the rate expected of oil) (IEA)
 - Global LNG demand: predicted to increase 5/6% p.a. to 2020, thereafter circa. 2/3% p.a. as markets mature

BUT:

- 2015 – reduction of demand in South East Asia has led to oversupply and falling prices (demand down 6.7% in Japan and China in 2015)
- Sellers will still evaluate deals carefully (buyers / new markets are still competing for LNG supply, e.g. Brazil, Chile, Morocco and South Africa, and traditional buyers - EU, Japan, Korea, China)
- Buyers’ market at present, and buyers are seeking greater flexibility:
 - Fluctuations in ACQ have been accepted
 - Destination flexibility and price review provisions increasingly seen
World LNG Pricing (November 2013)

LNG Estimated Landed Prices

- Altamira: $16.40
- Lake Charles: $3.15
- Cove Point: $3.26
- Spain: $10.90
- UK: $10.66
- Belgium: $10.40
- Korea: $15.65
- China: $15.65
- Japan: $15.65
- India: $13.75
- Rio de Janeiro: $14.65
- Bahia Blanca: $15.65
World LNG Pricing (May 2016)

LNG Estimated Landed Prices

- Cove Point: $1.78
- Canaport: $2.66
- Lake Charles: $2.04
- Belgium: $4.30
- UK: $4.27
- Spain: $4.46
- Korea: $4.55
- Japan: $4.55
- India: $4.50
- China: $4.40
- Rio de Janeiro: $4.74
- Bahia Blanca: $4.73
World LNG Pricing Outlook

– Oil indexation will become more difficult
– Gradual migration away from oil-linked pricing – recent oil price slump has seen JCC linked pricing dropping below Henry Hub linked delivery prices (but this will not always be the case - oil price rises). Japanese utilities are currently diversifying their supply portfolios away from purely oil-linked contracts.
– Lowering of contract “slopes”
– Possibility of spot / hub gas-linked contracts for North American LNG, a “Henry Hub plus” pricing structure
– Buyer’s onsale / deferral rights are increasingly important – to take advantage when spot prices are high
– Development of Singapore SLNG – spot price index for Asian LNG
– Spot rates do not necessarily mean cheaper LNG prices
– Narrowing of regional differences – truly global, rather than regional pricing?
Why Gas to Power?
Use of Gas to Power Projects

- Gas to power projects used globally as a key element of diversified power networks:
 - In the US – plentiful indigenous gas and extensive pipeline network
 - In Europe – diversified supply – pipeline gas from Russia / North Africa plus indigenous reserves (e.g. Norway / UK) plus LNG (e.g. Spain)
 - In Japan / South Korea – no indigenous reserves, but LNG imports since the 1960s have been used to establish extensive gas network and infrastructure
- Relatively cheap up-front opex, and quicker to install and commission than coal-fired plant
- Current over-supply of gas in the market and low prices
Objectives of Gas to Power Projects

- Add significant capacity on an expedited basis
- Addition to long-term planned power generation mix
 – security of supply and fuel diversification considerations
- Grid stability – address inflexibility or intermittency of other generation sources (e.g. nuclear, renewables)
- Use of power to anchor development of gas markets
 – potential catalyst for development of domestic gas reserves, or industrialisation
- Address environmental concerns
- Potential for fuel switching from existing diesel / fuel oil-fired plants
Key Issues and Considerations
Key Issues & Considerations

Project / Infrastructure Issues

1 – **Existence of a gas market**
- Does the proposed jurisdiction have an established gas market?
- Reconciling LNG sales with power consumption
- Is there an alternative source of gas available or alternative customers for excess gas?
- Does the gas supply or power offtake address imbalances?
- Potential to trigger development of a domestic gas market – e.g. South Africa
- Regulatory issues, particularly as to retail gas pricing/ third party access

2 – **Availability of infrastructure**
- Reception / pipeline facilities available?
- Infrastructure effect on project economics and risk
- Types of infrastructure – land based or floating terminals?

3 – ‘**Project on Project**’ Risk
- Inter-connectivity risks associated with broad range of project components and participants
- Are projects fully integrated or are separate projects interconnected?
- Steps that can be taken to mitigate particular project on project risks
Key Issues & Considerations

Financing / Economic Issues

4 – Long term economics and fuel price risks
- Fuel price fluctuations can be steep and unpredictable
- LNG gas to power projects require very high capex and are inherently of a long term nature
- Pricing economics need to be reflected in the PPA, with appropriate levels of indexation to address fuel price rises
- Consider need for government guarantees to back offtaker payment obligations

5 – Bankability and project financing
- How are risks to be addressed in the project documentation?
- Availability of support from ECAs?

6 – Dollarisation / FX concerns
- Very large proportion of LNG gas to power costs (both capex and opex) will be payable in US Dollars (e.g. turbine acquisition and maintenance, fuel costs)
- What currency will the power be sold in? If local currency, what is the historic relationship between this currency and the US Dollar?
- Investors unlikely to take currency risk – will need to be passed through in the PPA.
- Currency denomination of project financing? Is there sufficient capacity within the local lending market to support a project of this nature?
Key Issues & Considerations

Local and Regulatory Issues

6 – Creditworthiness of PPA purchaser
- Entire project hinges on PPA, and ability of offtaker to meet each of its payment obligations
- Who will be the offtaker? Is it a state-owned utility?
- Long term nature of project economics will require a long term (likely 20 year +) PPA
- Availability of government guarantees or other sureties may be central to bankability of project

7 – Environmental considerations
- More of a ‘clean’ fuel than coal or fuel oil – a key driver in South Africa, where the government is looking to reduce reliance on coal generated power
- But a broad variety of issues to be considered, including offshore and coastal effects of FSRU or FSU usage

8 – Local content requirements
- Nature of CCGT technology does not lend itself well to local content requirements
- Particularly the case in a country which is new to gas to power technology, without established ancillary or service sector
- Other considerations, such as BEE in South Africa need to be assessed by foreign investors and can effect project economics
- But, can be used as a catalyst for development of local skills and industry within the country
Case Studies – South Africa and Morocco
South Africa – gas infrastructure
South Africa

- LNG to power projects at three port locations (total of 3126 MW)
- The Department of Energy (“DOE”) confirmed plans to procure a new 600 MW gas-fired power generation project, to be developed as a public-private partnership. It is envisaged that the private ‘strategic partner’ will work with the State-owned companies (SoCs) to implement the project, with private sector partners playing the lead role in developing, financing, operating and maintaining the facility
- Use of FSRUs (one vessel at each of three port locations)
- Bundled project structure, but with proposed multiple IPPs at each location
- Development of indigenous gas reserves and a domestic gas market
- Key concerns – FX risks, lack of alternative gas supply, political risk?
Future Developments – Unlocking SA’s Domestic Gas Resources

- Indication that LNG projects will be used to develop a gas market in South Africa
- Intention is to use this as a trigger for the development of domestic gas resources. All three proposed sites are close to current offshore and shale exploration blocks
- LNG import (and associated costs) would be phased out if a reliable, economic, indigenous gas source could be used.
- How does this fit with proposed bundled structure? IPPs may not incentivised if project could directly benefit competitors. What protections/comfort can IPPs seek from Eskom/government?
Morocco – gas infrastructure
Morocco

– High economic growth (6% p.a.) is driving up power demand. Additional capacity required to meet these needs
– Low levels of existing gas production, potential shale gas development
– Some existing gas infrastructure (e.g. pipeline from Algeria to Spain)
– Objectives:
 ▪ fuel source diversification
 ▪ environmental concerns
 ▪ gas market development & industrialisation
 ▪ address power shortfall – grid stability – intermittances caused by renewables projects to be addressed
Morocco

- Project:
 - Land-based LNG import terminal at Jorf Lasfar (4 mtpa)
 - 400km gas pipeline
 - 2 x 1200MW CCGT power plants (IPPs) at Jorf Lasfar and Dhar Doum – coming on line in stages between 2021 and 2025.
 - Conversion of two existing 450 MW oil fired plants to CCGT
 - 1.5 bcm of gas to be used directly by industry (3.5 bcm for gas to power)

- Unbundled: 2 elements:
 - terminal, pipeline & IPPs as a single project
 - LNG import

- Project cost: estimated $4.6bn.
Asia Pacific gas to power story

3 broad trends

- Increasing gas to power generation capacity (but cf coal)
 - More competition for traditional LNG buyers
 - Indonesia slated to be a net gas importer by 2020
- Changing price dynamics
 - But, impact of transportation costs
 - Traditional buyers still want to maintain LNG supply mix, to mitigate different risk profiles
- Interconnectedness
 - Increasing moves to supply power cross-border
 - Geographical restrictions – LNG break bulk models
Electricity generation - S.E. Asia TWh

<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>2013</th>
<th>2020</th>
<th>2040</th>
<th>Shares</th>
<th></th>
<th>CAAGR*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2013</td>
<td>2040</td>
<td>2013-2040</td>
</tr>
<tr>
<td>Fossil fuels</td>
<td>120</td>
<td>648</td>
<td>925</td>
<td>1699</td>
<td>82%</td>
<td>77%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Coal</td>
<td>28</td>
<td>255</td>
<td>482</td>
<td>1097</td>
<td>32%</td>
<td>50%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Gas</td>
<td>26</td>
<td>349</td>
<td>406</td>
<td>578</td>
<td>44%</td>
<td>26%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Oil</td>
<td>66</td>
<td>45</td>
<td>36</td>
<td>24</td>
<td>6%</td>
<td>1%</td>
<td>-2.2%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>1%</td>
<td>n.a.</td>
</tr>
<tr>
<td>Renewables</td>
<td>34</td>
<td>141</td>
<td>180</td>
<td>481</td>
<td>18%</td>
<td>22%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Hydro</td>
<td>27</td>
<td>110</td>
<td>119</td>
<td>255</td>
<td>14%</td>
<td>12%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Geothermal</td>
<td>7</td>
<td>19</td>
<td>27</td>
<td>58</td>
<td>2%</td>
<td>3%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>1</td>
<td>10</td>
<td>22</td>
<td>75</td>
<td>1%</td>
<td>3%</td>
<td>7.7%</td>
</tr>
<tr>
<td>Other**</td>
<td>-</td>
<td>2</td>
<td>12</td>
<td>93</td>
<td>0%</td>
<td>4%</td>
<td>16.0%</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>789</td>
<td>1104</td>
<td>2212</td>
<td>100%</td>
<td>100%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

*Compound average annual growth rate. **Includes wind and solar PV.
Case study - Indonesia

- Mix of different gas to power project structures, e.g.:
 - PLN (state owned power co.) = genco
 - IPPs (IPP procures gas/PLN supplies)
 - e.g. Java 1

![Diagram of gas to power project structure]

NB:
- 2 x 800MW nett capacity gas Fired IPP project, West Java Province, Indonesia
- Gas receiving facilities, 500 kV transmission line to PLN’s Substation at Maura Tawar
- 25 year term, BOOT
- Only one FSRU, multiple uses of FSRU offtake gas, not just the IPP’s power station
- Issues: risk allocation / pass thru.; financial viability; land; supply FM and sourcing gas; FX; cabotage; procurement rules